You can create your own calculations using TypeScript. The code at the bottom of this page helps you determine whether it's cheaper in the long run to install solar panels or continue paying your electricity bill as is.
Here's a high-level breakdown of how the code determines solar panel costs.
Part 1: System needs and setup
First, define your current electricity usage and bills:
- How much electricity do you use each month? (
monthlyKwhEnergyConsumption
) - How much does that electricity cost? (
energyCostPerKwh
)
Next, enter your solar system plans:
- How many panels? (
panelsCount
) - How powerful are the panels? (
panelCapacityWatts
) - How much does installation cost? (
installationCostPerWatt
) - Any discounts on the system? (
solarIncentives
)
Part 2: Calculations
Based on the inputted values, the code calculates:
yearlyProductionAcKwh
: The total annual electricity your solar panels can generate.totalCostWithSolar
: The cost of electricity over many years with solar panels.totalCostWithoutSolar
: The cost of electricity over many years without solar panels.
Part 3: Results
The code also tells you the following:
savings
: The difference between the cost with and without solar panels.breakEvenYear
: How many years until the cost of solar panels equals the savings on electricity.
Example code
// Solar configuration, from buildingInsights.solarPotential.solarPanelConfigs let panelsCount = 20; let yearlyEnergyDcKwh = 12000; // Basic settings let monthlyAverageEnergyBill: number = 300; let energyCostPerKwh = 0.31; let panelCapacityWatts = 400; let solarIncentives: number = 7000; let installationCostPerWatt: number = 4.0; let installationLifeSpan: number = 20; // Advanced settings let dcToAcDerate = 0.85; let efficiencyDepreciationFactor = 0.995; let costIncreaseFactor = 1.022; let discountRate = 1.04; // Solar installation let installationSizeKw: number = (panelsCount * panelCapacityWatts) / 1000; let installationCostTotal: number = installationCostPerWatt * installationSizeKw * 1000; // Energy consumption let monthlyKwhEnergyConsumption: number = monthlyAverageEnergyBill / energyCostPerKwh; let yearlyKwhEnergyConsumption: number = monthlyKwhEnergyConsumption * 12; // Energy produced for installation life span let initialAcKwhPerYear: number = yearlyEnergyDcKwh * dcToAcDerate; let yearlyProductionAcKwh: number[] = [...Array(installationLifeSpan).keys()].map( (year) => initialAcKwhPerYear * efficiencyDepreciationFactor ** year, ); // Cost with solar for installation life span let yearlyUtilityBillEstimates: number[] = yearlyProductionAcKwh.map( (yearlyKwhEnergyProduced, year) => { const billEnergyKwh = yearlyKwhEnergyConsumption - yearlyKwhEnergyProduced; const billEstimate = (billEnergyKwh * energyCostPerKwh * costIncreaseFactor ** year) / discountRate ** year; return Math.max(billEstimate, 0); // bill cannot be negative }, ); let remainingLifetimeUtilityBill: number = yearlyUtilityBillEstimates.reduce((x, y) => x + y, 0); let totalCostWithSolar: number = installationCostTotal + remainingLifetimeUtilityBill - solarIncentives; console.log(`Cost with solar: $${totalCostWithSolar.toFixed(2)}`); // Cost without solar for installation life span let yearlyCostWithoutSolar: number[] = [...Array(installationLifeSpan).keys()].map( (year) => (monthlyAverageEnergyBill * 12 * costIncreaseFactor ** year) / discountRate ** year, ); let totalCostWithoutSolar: number = yearlyCostWithoutSolar.reduce((x, y) => x + y, 0); console.log(`Cost without solar: $${totalCostWithoutSolar.toFixed(2)}`); // Savings with solar for installation life span let savings: number = totalCostWithoutSolar - totalCostWithSolar; console.log(`Savings: $${savings.toFixed(2)} in ${installationLifeSpan} years`);