קל לארגן דפים בעזרת אוספים
אפשר לשמור ולסווג תוכן על סמך ההעדפות שלך.
ל-Google יש ספריית Python בקוד פתוח, שיוצרת אובייקטים מסוג DataTable
לצריכה באמצעות רכיבים חזותיים. אפשר להשתמש בספרייה הזו כדי ליצור DataTable ב-Python ולהוציא אותו משלושה פורמטים:
מחרוזת JSON – אם הדף שמארח את הדף שמארח את התצוגה החזותית שמשתמשת בנתונים שלכם, תוכלו ליצור מחרוזת JSON שיועבר ל-constructor של DataTable כדי לאכלס אותו.
תגובת JSON – אם לא מארחים את הדף שמארח את התצוגה החזותית, ואתם רוצים רק לשמש כמקור נתונים להמחשות חיצוניות, אפשר ליצור מחרוזת תשובה מלאה של JSON שניתן להחזיר בתגובה לבקשת נתונים.
מחרוזת JavaScript – אפשר להפיק פלט של טבלת הנתונים כמחרוזת שמורכבת מכמה שורות של קוד JavaScript. המחרוזת הזו תיצור ותאכלס אובייקט
google.visualization.DataTable בנתונים מטבלת Python. לאחר מכן אפשר להריץ את ה-JavaScript במנוע כדי ליצור ולאכלס את האובייקט google.visualization.DataTable. בדרך כלל היא משמשת
לניפוי באגים בלבד.
מייבאים את הספרייה gviz_api.py מהקישור שלמעלה ויוצרים
את המחלקה gviz_api.DataTable. הכיתה משתמשת בשני פרמטרים:
סכימת טבלה שמתארת את הפורמט של הנתונים בטבלה,
ונתונים אופציונליים לאכלוס הטבלה. אפשר להוסיף נתונים מאוחר יותר,
או להחליף את הנתונים לגמרי, אבל לא להסיר שורות בודדות או
לנקות את הסכימה של הטבלה.
2. תיאור של סכימת הטבלה
סכימת הטבלה מצוינת על ידי הפרמטר table_description
שמועבר ל-constructor. אי אפשר לשנות אותה בהמשך. בסכימה מתוארות כל העמודות בטבלה: סוג הנתונים של כל עמודה, המזהה ותווית אופציונלית.
כל עמודה מתוארת באמצעות tuple: (מזהה [,data_type [,label
[,custom_properties]]]).
ID – מזהה מחרוזת שמשמש לזיהוי העמודה. אפשר לכלול רווחים.
המזהה של כל עמודה חייב להיות ייחודי.
data_type – [אופציונלי] מתאר מחרוזת של סוג הנתונים ב-Python של הנתונים בעמודה הזו. אפשר לראות רשימה של סוגי נתונים נתמכים במתודה SingleValueToJS() . דוגמאות: 'string' (מחרוזת) ו-'boolean' (בוליאני).
אם לא מציינים זאת, ברירת המחדל היא 'מחרוזת'.
label – שם ידידותי למשתמש לעמודה, שיוצג כחלק מההמחשה החזותית. אם לא מציינים זאת, המערכת משתמשת בערך המזהה.
custom_properties – מילון {String:String} של מאפייני עמודות בהתאמה אישית.
סכימת הטבלה היא אוסף של זוגות לתיאור עמודות. כל איבר ברשימה,
מפתח מילון או ערך מילון צריכים להיות אוסף אחר או רכיב מתאר. אפשר להשתמש בכל שילוב של מילונים או רשימות, אבל בסופו של דבר כל מפתח, ערך או חבר חייבים לקבל מ-tupleor. ריכזנו כאן כמה
דוגמאות.
רשימת עמודות: [('a', 'number'), ('b', 'string')]
Dictionary of lists: {('a', 'number'): [('b', 'number'), ('c', 'string')]}
Dictionary of dictionaries: {('a', 'number'): {'b': 'number', 'c': 'string'}}
וכן הלאה, בכל רמה של סידור פנימי.
3. אכלוס הנתונים
כדי להוסיף נתונים לטבלה, צריך ליצור מבנה של רכיבי נתונים באותו מבנה זהה לזה של סכימת הטבלה. לדוגמה, אם הסכימה היא רשימה,
הנתונים צריכים להיות רשימה:
שורה אחת בטבלה היא קטע של הנתונים והסכימה התואמים. לדוגמה, כך מוחלת סכימה של רשימה של שתי עמודות על שתי שורות נתונים.
Schema:[(color),(shape)]
/ \
Data: [["blue", "square"], ["red", "circle"]]
Table:
ColorShape
blue square
red circle
שימו לב שמפתחות המילון כאן מעריכים את נתוני העמודות. דוגמאות מורכבות יותר מופיעות במסמכי התיעוד של השיטה AppendData() בקוד. המטרה של הפעלת קינון מורכב כזה היא לאפשר להשתמש במבנה נתונים של Python שמתאים לצרכים שלכם.
4. פלט את הנתונים
פורמט הפלט הנפוץ ביותר הוא JSON, כך שסביר להניח שתשתמשו בפונקציה ToJsonResponse() כדי ליצור את הנתונים שיוחזרו. עם זאת, אם אתם מנתחים את בקשת הקלט ותומכים בפורמטים שונים של פלט, אפשר להפעיל כל אחת משיטות הפלט האחרות כדי להחזיר פורמטים אחרים, כולל ערכים מופרדים בפסיקים, ערכים מופרדים בטאבים ו-JavaScript. JavaScript משמש בדרך כלל רק לניפוי באגים. במאמר הטמעת מקור נתונים מוסבר איך לעבד בקשה לקבלת פורמט התשובה המועדף.
שימוש לדוגמה
לפניכם מספר דוגמאות שממחישות איך להשתמש בפורמטים השונים של הפלט.
דוגמה של ToJSon ו-ToJS
#!/usr/bin/python
import gviz_api
page_template = """
<html>
<script src="https://www.gstatic.com/charts/loader.js"></script>
<script>
google.charts.load('current', {packages:['table']});
google.charts.setOnLoadCallback(drawTable);
function drawTable() {
%(jscode)s
var jscode_table = new google.visualization.Table(document.getElementById('table_div_jscode'));
jscode_table.draw(jscode_data, {showRowNumber: true});
var json_table = new google.visualization.Table(document.getElementById('table_div_json'));
var json_data = new google.visualization.DataTable(%(json)s, 0.6);
json_table.draw(json_data, {showRowNumber: true});
}
</script>
<body>
<H1>Table created using ToJSCode</H1>
<div id="table_div_jscode"></div>
<H1>Table created using ToJSon</H1>
<div id="table_div_json"></div>
</body>
</html>
"""
def main():
# Creating the data
description = {"name": ("string", "Name"),
"salary": ("number", "Salary"),
"full_time": ("boolean", "Full Time Employee")}
data = [{"name": "Mike", "salary": (10000, "$10,000"), "full_time": True},
{"name": "Jim", "salary": (800, "$800"), "full_time": False},
{"name": "Alice", "salary": (12500, "$12,500"), "full_time": True},
{"name": "Bob", "salary": (7000, "$7,000"), "full_time": True}]
# Loading it into gviz_api.DataTable
data_table = gviz_api.DataTable(description)
data_table.LoadData(data)
# Create a JavaScript code string.
jscode = data_table.ToJSCode("jscode_data",
columns_order=("name", "salary", "full_time"),
order_by="salary")
# Create a JSON string.
json = data_table.ToJSon(columns_order=("name", "salary", "full_time"),
order_by="salary")
# Put the JS code and JSON string into the template.
print "Content-type: text/html"
print
print page_template % vars()
if __name__ == '__main__':
main()
[[["התוכן קל להבנה","easyToUnderstand","thumb-up"],["התוכן עזר לי לפתור בעיה","solvedMyProblem","thumb-up"],["סיבה אחרת","otherUp","thumb-up"]],[["חסרים לי מידע או פרטים","missingTheInformationINeed","thumb-down"],["התוכן מורכב מדי או עם יותר מדי שלבים","tooComplicatedTooManySteps","thumb-down"],["התוכן לא עדכני","outOfDate","thumb-down"],["בעיה בתרגום","translationIssue","thumb-down"],["בעיה בדוגמאות/בקוד","samplesCodeIssue","thumb-down"],["סיבה אחרת","otherDown","thumb-down"]],["עדכון אחרון: 2024-07-10 (שעון UTC)."],[[["\u003cp\u003eGoogle's open-sourced Python library, \u003ccode\u003egviz_api\u003c/code\u003e, enables the creation of \u003ccode\u003eDataTable\u003c/code\u003e objects for visualizations, supporting JSON string, JSON response, and JavaScript string output formats.\u003c/p\u003e\n"],["\u003cp\u003eThe library requires a table schema definition outlining the data types, IDs, and labels for each column within the \u003ccode\u003eDataTable\u003c/code\u003e.\u003c/p\u003e\n"],["\u003cp\u003eUsers populate the \u003ccode\u003eDataTable\u003c/code\u003e with data structured according to the defined schema, using lists or dictionaries for rows and columns.\u003c/p\u003e\n"],["\u003cp\u003e\u003ccode\u003egviz_api\u003c/code\u003e offers functions like \u003ccode\u003eToJsonResponse()\u003c/code\u003e to format data for visualization consumption, with JSON being the most common format.\u003c/p\u003e\n"],["\u003cp\u003eThe library facilitates data exchange between Python and Google Charts, enabling dynamic and interactive visualizations.\u003c/p\u003e\n"]]],[],null,["# Data Source Python Library\n\nGoogle has open-sourced a Python library that creates `DataTable`\nobjects for consumption by visualizations. This library can be used to create\na `DataTable` in Python, and output it in any of three formats:\n\n- **JSON string** -- If you are hosting the page that hosts the visualization that uses your data, you can generate a JSON string to pass into a `DataTable` constructor to populate it.\n- **JSON response**-- If you do not host the page that hosts the visualization, and just want to act as a data source for external visualizations, you can create a complete JSON response string that can be returned in response to a data request.\n- **JavaScript string** -- You can output the data table as a string that consists of several lines of JavaScript code that will create and populate a [google.visualization.DataTable](/chart/interactive/docs/reference#DataTable) object with the data from your Python table. You can then run this JavaScript in an engine to generate and populate the `google.visualization.DataTable` object. This is typically used for debugging only.\n\nThis document assumes that you understand basic [Python\nprogramming](http://www.python.org), and have read the introductory\nvisualization documentation for [creating a visualization](/chart/interactive/docs/quick_start) and [using\na visualization](/chart/interactive/docs). \n[The Python library is available here](https://github.com/google/google-visualization-python).\n\nContents\n--------\n\n- [How to Use the Library](#howtouse)\n - [Create a gviz_api.DataTable\n object](#createinstance)\n - [Describe your table schema](#describeschema)\n - [Populate your data](#populatedata)\n - [Output your data](#outputdata)\n- [Example Usage](#exampleusage)\n - [ToJSon and ToJS Example](#tojsonexample)\n - [ToJSonResponse Example](#tojsonresponseexample)\n\nHow to Use the Library\n----------------------\n\nHere are the basic steps, in more detail:\n\n### 1. Create\na `gviz_api.DataTable` object\n\nImport the gviz_api.py library from the link above and instantiate\nthe `gviz_api.DataTable` class. The class takes two parameters:\na table schema, which will describe the format of the data in the table, and\noptional data to populate the table with. You can add data later, if you like,\nor completely overwrite the data, but not remove individual rows, or clear\nout the table schema.\n\n### 2. Describe your table schema\n\nThe table schema is specified by the `table_description` parameter\npassed into the constructor. You cannot change it later. The schema describes\nall the columns in the table: the data type of each column, the ID, and an\noptional label.\n\nEach column is described by a tuple: (*ID* \\[*,data_type* \\[*,label*\n\\[*,custom_properties*\\]\\]\\]).\n\n- *ID* - A string ID used to identify the column. Can include spaces. The ID for each column must be unique.\n- *data_type* - \\[*optional*\\] A string descriptor of the Python data type of the data in that column. You can find a list of supported data types in the SingleValueToJS() method. Examples include \"string\" and \"boolean\". If not specified, the default is \"string.\"\n- *label* - A user-friendly name for the column, which might be displayed as part of the visualization. If not specified, the ID value is used.\n- *custom_properties* - A {String:String} dictionary of custom column properties.\n\nThe table schema is a collection of column descriptor tuples. Every list member,\ndictionary key or dictionary value must be either another collection or a descriptor\ntuple. You can use any combination of dictionaries or lists, but every key,\nvalue, or member must eventually evaluate to a descriptor tuple. Here are some\nexamples.\n\n- List of columns: \\[('a', 'number'), ('b', 'string')\\]\n- Dictionary of lists: {('a', 'number'): \\[('b', 'number'), ('c', 'string')\\]}\n- Dictionary of dictionaries: {('a', 'number'): {'b': 'number', 'c': 'string'}}\n- And so on, with any level of nesting.\n\n### 3. Populate your data\n\nTo add data to the table, build a structure of data elements in the exact\nsame structure as the table schema. So, for example, if your schema is a list,\nthe data must be a list:\n\n- schema: \\[(\"color\", \"string\"), (\"shape\", \"string\")\\]\n- data: \\[\\[\"blue\", \"square\"\\], \\[\"red\", \"circle\"\\]\\]\n\nIf the schema is a dictionary, the data must be a dictionary:\n\n- schema: {(\"rowname\", \"string\"): \\[(\"color\", \"string\"), (\"shape\", \"string\")\\] }\n- data: {\"row1\": \\[\"blue\", \"square\"\\], \"row2\": \\[\"red\", \"circle\"\\]}\n\nOne table row is a section of corresponding data and schema. For example,\nhere's how a schema of a list of two columns is applied to two rows of data. \n\n```\nSchema:[(color),(shape)]\n / \\ \nData: [[\"blue\", \"square\"], [\"red\", \"circle\"]]\n\nTable: \n Color Shape\n blue square\n red circle\n```\n\nNote that the\ndictionary keys here evaluate to column data. You can find more complex examples\nin the AppendData() method documentation in the code. The purpose of allowing\nsuch complex nesting is to let you use a Python data structure appropriate\nto your needs.\n\n### 4. Output your data\n\nThe most common output format is JSON, so you will probably use the `ToJsonResponse()`\nfunction to create the data to return. If, however, you are parsing the\ninput request and supporting different output formats, you can call any of\nthe other output methods to return other formats, including comma-separated\nvalues, tab-separated values, and JavaScript. JavaScript is typically only\nused for debugging. See\n[Implementing a Data Source](/chart/interactive/docs/dev/implementing_data_source) to learn\nhow to process a request to obtain the preferred response format.\n\nExample Usage\n-------------\n\nHere are some examples demonstrating how to use the various output formats.\n\n### ToJSon and ToJS Example\n\n```\n#!/usr/bin/python\n\nimport gviz_api\n\npage_template = \"\"\"\n\u003chtml\u003e\n \u003cscript src=\"https://www.gstatic.com/charts/loader.js\"\u003e\u003c/script\u003e\n \u003cscript\u003e\n google.charts.load('current', {packages:['table']});\n\n google.charts.setOnLoadCallback(drawTable);\n function drawTable() {\n %(jscode)s\n var jscode_table = new google.visualization.Table(document.getElementById('table_div_jscode'));\n jscode_table.draw(jscode_data, {showRowNumber: true});\n\n var json_table = new google.visualization.Table(document.getElementById('table_div_json'));\n var json_data = new google.visualization.DataTable(%(json)s, 0.6);\n json_table.draw(json_data, {showRowNumber: true});\n }\n \u003c/script\u003e\n \u003cbody\u003e\n \u003cH1\u003eTable created using ToJSCode\u003c/H1\u003e\n \u003cdiv id=\"table_div_jscode\"\u003e\u003c/div\u003e\n \u003cH1\u003eTable created using ToJSon\u003c/H1\u003e\n \u003cdiv id=\"table_div_json\"\u003e\u003c/div\u003e\n \u003c/body\u003e\n\u003c/html\u003e\n\"\"\"\n\ndef main():\n # Creating the data\n description = {\"name\": (\"string\", \"Name\"),\n \"salary\": (\"number\", \"Salary\"),\n \"full_time\": (\"boolean\", \"Full Time Employee\")}\n data = [{\"name\": \"Mike\", \"salary\": (10000, \"$10,000\"), \"full_time\": True},\n {\"name\": \"Jim\", \"salary\": (800, \"$800\"), \"full_time\": False},\n {\"name\": \"Alice\", \"salary\": (12500, \"$12,500\"), \"full_time\": True},\n {\"name\": \"Bob\", \"salary\": (7000, \"$7,000\"), \"full_time\": True}]\n\n # Loading it into gviz_api.DataTable\n data_table = gviz_api.DataTable(description)\n data_table.LoadData(data)\n\n # Create a JavaScript code string.\n jscode = data_table.ToJSCode(\"jscode_data\",\n columns_order=(\"name\", \"salary\", \"full_time\"),\n order_by=\"salary\")\n # Create a JSON string.\n json = data_table.ToJSon(columns_order=(\"name\", \"salary\", \"full_time\"),\n order_by=\"salary\")\n\n # Put the JS code and JSON string into the template.\n print \"Content-type: text/html\"\n print\n print page_template % vars()\n\n\nif __name__ == '__main__':\n main()\n```\n\n### ToJSonResponse\nExample\n\nJSonResponse is used by a remote client in a data request. \n\n```\n#!/usr/bin/python\n\nimport gviz_api\n\ndescription = {\"name\": (\"string\", \"Name\"),\n \"salary\": (\"number\", \"Salary\"),\n \"full_time\": (\"boolean\", \"Full Time Employee\")}\ndata = [{\"name\": \"Mike\", \"salary\": (10000, \"$10,000\"), \"full_time\": True},\n {\"name\": \"Jim\", \"salary\": (800, \"$800\"), \"full_time\": False},\n {\"name\": \"Alice\", \"salary\": (12500, \"$12,500\"), \"full_time\": True},\n {\"name\": \"Bob\", \"salary\": (7000, \"$7,000\"), \"full_time\": True}]\n\ndata_table = gviz_api.DataTable(description)\ndata_table.LoadData(data)\nprint \"Content-type: text/plain\"\nprint\nprint data_table.ToJSonResponse(columns_order=(\"name\", \"salary\", \"full_time\"),\n order_by=\"salary\")\n```"]]