In the knapsack problem, you need to pack a set of items, with given values and sizes (such as weights or volumes), into a container with a maximum capacity . If the total size of the items exceeds the capacity, you can't pack them all. In that case, the problem is to choose a subset of the items of maximum total value that will fit in the container.
The following sections show how to solve a knapsack problem using OR-Tools.
Example
Here's a graphical depiction of a knapsack problem:
In the above animation, 50
items are packed into a bin. Each item has a value
(the number on the item) and a weight (roughly proportional to the area of the
item).
The bin is declared to have a capacity of 850
, and our goal is to find the set
of items that will maximize the total value without exceeding the capacity.
The following sections describe programs that solve a knapsack problem. For the full programs, see Complete programs.
Import the libraries
The following code imports the required libraries.
Python
from ortools.algorithms.python import knapsack_solver
C++
#include <algorithm> #include <cstdint> #include <iterator> #include <numeric> #include <sstream> #include <vector> #include "ortools/algorithms/knapsack_solver.h"
Java
import com.google.ortools.Loader; import com.google.ortools.algorithms.KnapsackSolver; import java.util.ArrayList;
C#
using System; using Google.OrTools.Algorithms;
Create the data
The code below creates the data for the problem.
Python
values = [ # fmt:off 360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312 # fmt:on ] weights = [ # fmt: off [7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13], # fmt: on ] capacities = [850]
C++
std::vector<int64_t> values = { 360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312}; std::vector<std::vector<int64_t>> weights = { {7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13}}; std::vector<int64_t> capacities = {850};
Java
final long[] values = {360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312}; final long[][] weights = {{7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13}}; final long[] capacities = {850};
C#
long[] values = { 360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312 }; long[,] weights = { { 7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13 } }; long[] capacities = { 850 };
The data includes the following:
weights
: A vector containing the weights of the items.values
: A vector containing the values of the items.capacities
: A vector with just one entry, the capacity of the knapsack.
Declare the solver
The following code declares the knapsack solver, a specialized solver for knapsack problems.
Python
solver = knapsack_solver.KnapsackSolver( knapsack_solver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample", )
C++
KnapsackSolver solver( KnapsackSolver::KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample");
Java
KnapsackSolver solver = new KnapsackSolver( KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "test");
C#
KnapsackSolver solver = new KnapsackSolver( KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample");
The option KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER
tells the solver to
use the branch and bound algorithm to solve the problem.
Call the solver
The following code calls the solver and prints the solution.
Python
solver.init(values, weights, capacities) computed_value = solver.solve() packed_items = [] packed_weights = [] total_weight = 0 print("Total value =", computed_value) for i in range(len(values)): if solver.best_solution_contains(i): packed_items.append(i) packed_weights.append(weights[0][i]) total_weight += weights[0][i] print("Total weight:", total_weight) print("Packed items:", packed_items) print("Packed_weights:", packed_weights)
C++
solver.Init(values, weights, capacities); int64_t computed_value = solver.Solve(); std::vector<int> packed_items; for (std::size_t i = 0; i < values.size(); ++i) { if (solver.BestSolutionContains(i)) packed_items.push_back(i); } std::ostringstream packed_items_ss; std::copy(packed_items.begin(), packed_items.end() - 1, std::ostream_iterator<int>(packed_items_ss, ", ")); packed_items_ss << packed_items.back(); std::vector<int64_t> packed_weights; packed_weights.reserve(packed_items.size()); for (const auto& it : packed_items) { packed_weights.push_back(weights[0][it]); } std::ostringstream packed_weights_ss; std::copy(packed_weights.begin(), packed_weights.end() - 1, std::ostream_iterator<int>(packed_weights_ss, ", ")); packed_weights_ss << packed_weights.back(); int64_t total_weights = std::accumulate(packed_weights.begin(), packed_weights.end(), int64_t{0}); LOG(INFO) << "Total value: " << computed_value; LOG(INFO) << "Packed items: {" << packed_items_ss.str() << "}"; LOG(INFO) << "Total weight: " << total_weights; LOG(INFO) << "Packed weights: {" << packed_weights_ss.str() << "}";
Java
solver.init(values, weights, capacities); final long computedValue = solver.solve(); ArrayList<Integer> packedItems = new ArrayList<>(); ArrayList<Long> packedWeights = new ArrayList<>(); int totalWeight = 0; System.out.println("Total value = " + computedValue); for (int i = 0; i < values.length; i++) { if (solver.bestSolutionContains(i)) { packedItems.add(i); packedWeights.add(weights[0][i]); totalWeight = (int) (totalWeight + weights[0][i]); } } System.out.println("Total weight: " + totalWeight); System.out.println("Packed items: " + packedItems); System.out.println("Packed weights: " + packedWeights);
C#
solver.Init(values, weights, capacities); long computedValue = solver.Solve(); Console.WriteLine("Optimal Value = " + computedValue);
The program first initializes the solver, and then calls it by
computed_value = solver.Solve()
.
The total value of the optimal solution is computed_value
, which is the same
as the total weight in this case. The program then gets the indices of the
packed items in the solution as follows:
packed_items = [x for x in range(0, len(weights[0])) if solver.BestSolutionContains(x)]
Total value = 7534 Total weight: 850 Packed items: [0, 1, 3, 4, 6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 24, 27, 28, 29, 30, 31, 32, 34, 38, 39, 41, 42, 44, 47, 48, 49] Packed_weights: [7, 0, 22, 80, 11, 59, 18, 0, 3, 8, 15, 42, 9, 0, 47, 52, 26, 6, 29, 84, 2, 4, 18, 7, 71, 3, 66, 31, 0, 65, 52, 13]
Complete programs
Below are the complete programs that solve the knapsack problem.
Python
from ortools.algorithms.python import knapsack_solver def main(): # Create the solver. solver = knapsack_solver.KnapsackSolver( knapsack_solver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample", ) values = [ # fmt:off 360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312 # fmt:on ] weights = [ # fmt: off [7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13], # fmt: on ] capacities = [850] solver.init(values, weights, capacities) computed_value = solver.solve() packed_items = [] packed_weights = [] total_weight = 0 print("Total value =", computed_value) for i in range(len(values)): if solver.best_solution_contains(i): packed_items.append(i) packed_weights.append(weights[0][i]) total_weight += weights[0][i] print("Total weight:", total_weight) print("Packed items:", packed_items) print("Packed_weights:", packed_weights) if __name__ == "__main__": main()
C++
#include <algorithm> #include <cstdint> #include <iterator> #include <numeric> #include <sstream> #include <vector> #include "ortools/algorithms/knapsack_solver.h" namespace operations_research { void RunKnapsackExample() { // Instantiate the solver. KnapsackSolver solver( KnapsackSolver::KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample"); std::vector<int64_t> values = { 360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312}; std::vector<std::vector<int64_t>> weights = { {7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13}}; std::vector<int64_t> capacities = {850}; solver.Init(values, weights, capacities); int64_t computed_value = solver.Solve(); // Print solution std::vector<int> packed_items; for (std::size_t i = 0; i < values.size(); ++i) { if (solver.BestSolutionContains(i)) packed_items.push_back(i); } std::ostringstream packed_items_ss; std::copy(packed_items.begin(), packed_items.end() - 1, std::ostream_iterator<int>(packed_items_ss, ", ")); packed_items_ss << packed_items.back(); std::vector<int64_t> packed_weights; packed_weights.reserve(packed_items.size()); for (const auto& it : packed_items) { packed_weights.push_back(weights[0][it]); } std::ostringstream packed_weights_ss; std::copy(packed_weights.begin(), packed_weights.end() - 1, std::ostream_iterator<int>(packed_weights_ss, ", ")); packed_weights_ss << packed_weights.back(); int64_t total_weights = std::accumulate(packed_weights.begin(), packed_weights.end(), int64_t{0}); LOG(INFO) << "Total value: " << computed_value; LOG(INFO) << "Packed items: {" << packed_items_ss.str() << "}"; LOG(INFO) << "Total weight: " << total_weights; LOG(INFO) << "Packed weights: {" << packed_weights_ss.str() << "}"; } } // namespace operations_research int main(int argc, char** argv) { operations_research::RunKnapsackExample(); return EXIT_SUCCESS; }
Java
package com.google.ortools.algorithms.samples; import com.google.ortools.Loader; import com.google.ortools.algorithms.KnapsackSolver; import java.util.ArrayList; /** * Sample showing how to model using the knapsack solver. */ public class Knapsack { private Knapsack() {} private static void solve() { KnapsackSolver solver = new KnapsackSolver( KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "test"); final long[] values = {360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312}; final long[][] weights = {{7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13}}; final long[] capacities = {850}; solver.init(values, weights, capacities); final long computedValue = solver.solve(); ArrayList<Integer> packedItems = new ArrayList<>(); ArrayList<Long> packedWeights = new ArrayList<>(); int totalWeight = 0; System.out.println("Total value = " + computedValue); for (int i = 0; i < values.length; i++) { if (solver.bestSolutionContains(i)) { packedItems.add(i); packedWeights.add(weights[0][i]); totalWeight = (int) (totalWeight + weights[0][i]); } } System.out.println("Total weight: " + totalWeight); System.out.println("Packed items: " + packedItems); System.out.println("Packed weights: " + packedWeights); } public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); Knapsack.solve(); } }
C#
using System; using Google.OrTools.Algorithms; public class Knapsack { static void Main() { KnapsackSolver solver = new KnapsackSolver( KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample"); long[] values = { 360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312 }; long[,] weights = { { 7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13 } }; long[] capacities = { 850 }; solver.Init(values, weights, capacities); long computedValue = solver.Solve(); Console.WriteLine("Optimal Value = " + computedValue); } }