This section describes an assignment problem in which each task has a size, which represents how much time or effort the task requires. The total size of the tasks performed by each worker has a fixed bound.
We'll present Python programs that solve this problem using the CP-SAT solver and the MIP solver.
CP-SAT solution
First, let's take a look at the CP-SAT solution to the problem.
Import the libraries
The following code imports the required library.
Python
from ortools.sat.python import cp_model
C++
#include <stdlib.h> #include <cstdint> #include <numeric> #include <vector> #include "absl/strings/str_format.h" #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h"
Java
import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverStatus; import com.google.ortools.sat.LinearExpr; import com.google.ortools.sat.LinearExprBuilder; import com.google.ortools.sat.Literal; import java.util.ArrayList; import java.util.List; import java.util.stream.IntStream;
C#
using System; using System.Collections.Generic; using System.Linq; using Google.OrTools.Sat;
Define the data
The following code creates the data for the program.
Python
costs = [ [90, 76, 75, 70, 50, 74, 12, 68], [35, 85, 55, 65, 48, 101, 70, 83], [125, 95, 90, 105, 59, 120, 36, 73], [45, 110, 95, 115, 104, 83, 37, 71], [60, 105, 80, 75, 59, 62, 93, 88], [45, 65, 110, 95, 47, 31, 81, 34], [38, 51, 107, 41, 69, 99, 115, 48], [47, 85, 57, 71, 92, 77, 109, 36], [39, 63, 97, 49, 118, 56, 92, 61], [47, 101, 71, 60, 88, 109, 52, 90], ] num_workers = len(costs) num_tasks = len(costs[0]) task_sizes = [10, 7, 3, 12, 15, 4, 11, 5] # Maximum total of task sizes for any worker total_size_max = 15
C++
const std::vector<std::vector<int>> costs = {{ {{90, 76, 75, 70, 50, 74, 12, 68}}, {{35, 85, 55, 65, 48, 101, 70, 83}}, {{125, 95, 90, 105, 59, 120, 36, 73}}, {{45, 110, 95, 115, 104, 83, 37, 71}}, {{60, 105, 80, 75, 59, 62, 93, 88}}, {{45, 65, 110, 95, 47, 31, 81, 34}}, {{38, 51, 107, 41, 69, 99, 115, 48}}, {{47, 85, 57, 71, 92, 77, 109, 36}}, {{39, 63, 97, 49, 118, 56, 92, 61}}, {{47, 101, 71, 60, 88, 109, 52, 90}}, }}; const int num_workers = static_cast<int>(costs.size()); std::vector<int> all_workers(num_workers); std::iota(all_workers.begin(), all_workers.end(), 0); const int num_tasks = static_cast<int>(costs[0].size()); std::vector<int> all_tasks(num_tasks); std::iota(all_tasks.begin(), all_tasks.end(), 0); const std::vector<int64_t> task_sizes = {{10, 7, 3, 12, 15, 4, 11, 5}}; // Maximum total of task sizes for any worker const int total_size_max = 15;
Java
int[][] costs = { {90, 76, 75, 70, 50, 74, 12, 68}, {35, 85, 55, 65, 48, 101, 70, 83}, {125, 95, 90, 105, 59, 120, 36, 73}, {45, 110, 95, 115, 104, 83, 37, 71}, {60, 105, 80, 75, 59, 62, 93, 88}, {45, 65, 110, 95, 47, 31, 81, 34}, {38, 51, 107, 41, 69, 99, 115, 48}, {47, 85, 57, 71, 92, 77, 109, 36}, {39, 63, 97, 49, 118, 56, 92, 61}, {47, 101, 71, 60, 88, 109, 52, 90}, }; final int numWorkers = costs.length; final int numTasks = costs[0].length; final int[] allWorkers = IntStream.range(0, numWorkers).toArray(); final int[] allTasks = IntStream.range(0, numTasks).toArray(); final int[] taskSizes = {10, 7, 3, 12, 15, 4, 11, 5}; // Maximum total of task sizes for any worker final int totalSizeMax = 15;
C#
int[,] costs = { { 90, 76, 75, 70, 50, 74, 12, 68 }, { 35, 85, 55, 65, 48, 101, 70, 83 }, { 125, 95, 90, 105, 59, 120, 36, 73 }, { 45, 110, 95, 115, 104, 83, 37, 71 }, { 60, 105, 80, 75, 59, 62, 93, 88 }, { 45, 65, 110, 95, 47, 31, 81, 34 }, { 38, 51, 107, 41, 69, 99, 115, 48 }, { 47, 85, 57, 71, 92, 77, 109, 36 }, { 39, 63, 97, 49, 118, 56, 92, 61 }, { 47, 101, 71, 60, 88, 109, 52, 90 }, }; int numWorkers = costs.GetLength(0); int numTasks = costs.GetLength(1); int[] allWorkers = Enumerable.Range(0, numWorkers).ToArray(); int[] allTasks = Enumerable.Range(0, numTasks).ToArray(); int[] taskSizes = { 10, 7, 3, 12, 15, 4, 11, 5 }; // Maximum total of task sizes for any worker int totalSizeMax = 15;
As in previous examples, the
cost matrix
gives the cost for worker i
to perform task j
.
The sizes
vector gives the size of each task.
total_size_max
is the upper bound on the total size of the tasks
performed by any single worker.
Create the model
The following code creates the model.
Python
model = cp_model.CpModel()
C++
CpModelBuilder cp_model;
Java
CpModel model = new CpModel();
C#
CpModel model = new CpModel();
Create the variables
The following code creates an array of variables for the problem.
Python
x = {} for worker in range(num_workers): for task in range(num_tasks): x[worker, task] = model.new_bool_var(f"x[{worker},{task}]")
C++
// x[i][j] is an array of Boolean variables. x[i][j] is true // if worker i is assigned to task j. std::vector<std::vector<BoolVar>> x(num_workers, std::vector<BoolVar>(num_tasks)); for (int worker : all_workers) { for (int task : all_tasks) { x[worker][task] = cp_model.NewBoolVar().WithName( absl::StrFormat("x[%d,%d]", worker, task)); } }
Java
Literal[][] x = new Literal[numWorkers][numTasks]; for (int worker : allWorkers) { for (int task : allTasks) { x[worker][task] = model.newBoolVar("x[" + worker + "," + task + "]"); } }
C#
BoolVar[,] x = new BoolVar[numWorkers, numTasks]; foreach (int worker in allWorkers) { foreach (int task in allTasks) { x[worker, task] = model.NewBoolVar($"x[{worker},{task}]"); } }
Add the constraints
The following code creates the constraints for the program.
Python
# Each worker is assigned to at most one task. for worker in range(num_workers): model.add( sum(task_sizes[task] * x[worker, task] for task in range(num_tasks)) <= total_size_max ) # Each task is assigned to exactly one worker. for task in range(num_tasks): model.add_exactly_one(x[worker, task] for worker in range(num_workers))
C++
// Each worker is assigned to at most one task. for (int worker : all_workers) { LinearExpr task_sum; for (int task : all_tasks) { task_sum += x[worker][task] * task_sizes[task]; } cp_model.AddLessOrEqual(task_sum, total_size_max); } // Each task is assigned to exactly one worker. for (int task : all_tasks) { std::vector<BoolVar> tasks; for (int worker : all_workers) { tasks.push_back(x[worker][task]); } cp_model.AddExactlyOne(tasks); }
Java
// Each worker has a maximum capacity. for (int worker : allWorkers) { LinearExprBuilder expr = LinearExpr.newBuilder(); for (int task : allTasks) { expr.addTerm(x[worker][task], taskSizes[task]); } model.addLessOrEqual(expr, totalSizeMax); } // Each task is assigned to exactly one worker. for (int task : allTasks) { List<Literal> workers = new ArrayList<>(); for (int worker : allWorkers) { workers.add(x[worker][task]); } model.addExactlyOne(workers); }
C#
// Each worker is assigned to at most max task size. foreach (int worker in allWorkers) { BoolVar[] vars = new BoolVar[numTasks]; foreach (int task in allTasks) { vars[task] = x[worker, task]; } model.Add(LinearExpr.WeightedSum(vars, taskSizes) <= totalSizeMax); } // Each task is assigned to exactly one worker. foreach (int task in allTasks) { List<ILiteral> workers = new List<ILiteral>(); foreach (int worker in allWorkers) { workers.Add(x[worker, task]); } model.AddExactlyOne(workers); }
Create the objective
The following code creates the objective function.
Python
objective_terms = [] for worker in range(num_workers): for task in range(num_tasks): objective_terms.append(costs[worker][task] * x[worker, task]) model.minimize(sum(objective_terms))
C++
LinearExpr total_cost; for (int worker : all_workers) { for (int task : all_tasks) { total_cost += x[worker][task] * costs[worker][task]; } } cp_model.Minimize(total_cost);
Java
LinearExprBuilder obj = LinearExpr.newBuilder(); for (int worker : allWorkers) { for (int task : allTasks) { obj.addTerm(x[worker][task], costs[worker][task]); } } model.minimize(obj);
C#
LinearExprBuilder obj = LinearExpr.NewBuilder(); foreach (int worker in allWorkers) { foreach (int task in allTasks) { obj.AddTerm(x[worker, task], costs[worker, task]); } } model.Minimize(obj);
Invoke the solver
The following code invokes the solver.
Python
solver = cp_model.CpSolver() status = solver.solve(model)
C++
const CpSolverResponse response = Solve(cp_model.Build());
Java
CpSolver solver = new CpSolver(); CpSolverStatus status = solver.solve(model);
C#
CpSolver solver = new CpSolver(); CpSolverStatus status = solver.Solve(model); Console.WriteLine($"Solve status: {status}");
Display the results
Now, we can print the solution.
Python
if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE: print(f"Total cost = {solver.objective_value}\n") for worker in range(num_workers): for task in range(num_tasks): if solver.boolean_value(x[worker, task]): print( f"Worker {worker} assigned to task {task}." + f" Cost = {costs[worker][task]}" ) else: print("No solution found.")
C++
if (response.status() == CpSolverStatus::INFEASIBLE) { LOG(FATAL) << "No solution found."; } LOG(INFO) << "Total cost: " << response.objective_value(); LOG(INFO); for (int worker : all_workers) { for (int task : all_tasks) { if (SolutionBooleanValue(response, x[worker][task])) { LOG(INFO) << "Worker " << worker << " assigned to task " << task << ". Cost: " << costs[worker][task]; } } }
Java
// Check that the problem has a feasible solution. if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) { System.out.println("Total cost: " + solver.objectiveValue() + "\n"); for (int worker : allWorkers) { for (int task : allTasks) { if (solver.booleanValue(x[worker][task])) { System.out.println("Worker " + worker + " assigned to task " + task + ". Cost: " + costs[worker][task]); } } } } else { System.err.println("No solution found."); }
C#
// Check that the problem has a feasible solution. if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible) { Console.WriteLine($"Total cost: {solver.ObjectiveValue}\n"); foreach (int worker in allWorkers) { foreach (int task in allTasks) { if (solver.Value(x[worker, task]) > 0.5) { Console.WriteLine($"Worker {worker} assigned to task {task}. " + $"Cost: {costs[worker, task]}"); } } } } else { Console.WriteLine("No solution found."); }
Here's the output of the program.
Minimum cost: 326 Worker 0 assigned to task 6 Cost = 12 Worker 1 assigned to task 0 Cost = 35 Worker 1 assigned to task 2 Cost = 55 Worker 2 assigned to task 4 Cost = 59 Worker 5 assigned to task 5 Cost = 31 Worker 5 assigned to task 7 Cost = 34 Worker 6 assigned to task 1 Cost = 51 Worker 8 assigned to task 3 Cost = 49 Time = 2.2198 seconds
The entire program
Here is the entire program.
Python
"""Solves a simple assignment problem.""" from ortools.sat.python import cp_model def main() -> None: # Data costs = [ [90, 76, 75, 70, 50, 74, 12, 68], [35, 85, 55, 65, 48, 101, 70, 83], [125, 95, 90, 105, 59, 120, 36, 73], [45, 110, 95, 115, 104, 83, 37, 71], [60, 105, 80, 75, 59, 62, 93, 88], [45, 65, 110, 95, 47, 31, 81, 34], [38, 51, 107, 41, 69, 99, 115, 48], [47, 85, 57, 71, 92, 77, 109, 36], [39, 63, 97, 49, 118, 56, 92, 61], [47, 101, 71, 60, 88, 109, 52, 90], ] num_workers = len(costs) num_tasks = len(costs[0]) task_sizes = [10, 7, 3, 12, 15, 4, 11, 5] # Maximum total of task sizes for any worker total_size_max = 15 # Model model = cp_model.CpModel() # Variables x = {} for worker in range(num_workers): for task in range(num_tasks): x[worker, task] = model.new_bool_var(f"x[{worker},{task}]") # Constraints # Each worker is assigned to at most one task. for worker in range(num_workers): model.add( sum(task_sizes[task] * x[worker, task] for task in range(num_tasks)) <= total_size_max ) # Each task is assigned to exactly one worker. for task in range(num_tasks): model.add_exactly_one(x[worker, task] for worker in range(num_workers)) # Objective objective_terms = [] for worker in range(num_workers): for task in range(num_tasks): objective_terms.append(costs[worker][task] * x[worker, task]) model.minimize(sum(objective_terms)) # Solve solver = cp_model.CpSolver() status = solver.solve(model) # Print solution. if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE: print(f"Total cost = {solver.objective_value}\n") for worker in range(num_workers): for task in range(num_tasks): if solver.boolean_value(x[worker, task]): print( f"Worker {worker} assigned to task {task}." + f" Cost = {costs[worker][task]}" ) else: print("No solution found.") if __name__ == "__main__": main()
C++
// Solve assignment problem. #include <stdlib.h> #include <cstdint> #include <numeric> #include <vector> #include "absl/strings/str_format.h" #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" namespace operations_research { namespace sat { void AssignmentTaskSizes() { // Data const std::vector<std::vector<int>> costs = {{ {{90, 76, 75, 70, 50, 74, 12, 68}}, {{35, 85, 55, 65, 48, 101, 70, 83}}, {{125, 95, 90, 105, 59, 120, 36, 73}}, {{45, 110, 95, 115, 104, 83, 37, 71}}, {{60, 105, 80, 75, 59, 62, 93, 88}}, {{45, 65, 110, 95, 47, 31, 81, 34}}, {{38, 51, 107, 41, 69, 99, 115, 48}}, {{47, 85, 57, 71, 92, 77, 109, 36}}, {{39, 63, 97, 49, 118, 56, 92, 61}}, {{47, 101, 71, 60, 88, 109, 52, 90}}, }}; const int num_workers = static_cast<int>(costs.size()); std::vector<int> all_workers(num_workers); std::iota(all_workers.begin(), all_workers.end(), 0); const int num_tasks = static_cast<int>(costs[0].size()); std::vector<int> all_tasks(num_tasks); std::iota(all_tasks.begin(), all_tasks.end(), 0); const std::vector<int64_t> task_sizes = {{10, 7, 3, 12, 15, 4, 11, 5}}; // Maximum total of task sizes for any worker const int total_size_max = 15; // Model CpModelBuilder cp_model; // Variables // x[i][j] is an array of Boolean variables. x[i][j] is true // if worker i is assigned to task j. std::vector<std::vector<BoolVar>> x(num_workers, std::vector<BoolVar>(num_tasks)); for (int worker : all_workers) { for (int task : all_tasks) { x[worker][task] = cp_model.NewBoolVar().WithName( absl::StrFormat("x[%d,%d]", worker, task)); } } // Constraints // Each worker is assigned to at most one task. for (int worker : all_workers) { LinearExpr task_sum; for (int task : all_tasks) { task_sum += x[worker][task] * task_sizes[task]; } cp_model.AddLessOrEqual(task_sum, total_size_max); } // Each task is assigned to exactly one worker. for (int task : all_tasks) { std::vector<BoolVar> tasks; for (int worker : all_workers) { tasks.push_back(x[worker][task]); } cp_model.AddExactlyOne(tasks); } // Objective LinearExpr total_cost; for (int worker : all_workers) { for (int task : all_tasks) { total_cost += x[worker][task] * costs[worker][task]; } } cp_model.Minimize(total_cost); // Solve const CpSolverResponse response = Solve(cp_model.Build()); // Print solution. if (response.status() == CpSolverStatus::INFEASIBLE) { LOG(FATAL) << "No solution found."; } LOG(INFO) << "Total cost: " << response.objective_value(); LOG(INFO); for (int worker : all_workers) { for (int task : all_tasks) { if (SolutionBooleanValue(response, x[worker][task])) { LOG(INFO) << "Worker " << worker << " assigned to task " << task << ". Cost: " << costs[worker][task]; } } } } } // namespace sat } // namespace operations_research int main(int argc, char** argv) { operations_research::sat::AssignmentTaskSizes(); return EXIT_SUCCESS; }
Java
// CP-SAT example that solves an assignment problem. package com.google.ortools.sat.samples; import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverStatus; import com.google.ortools.sat.LinearExpr; import com.google.ortools.sat.LinearExprBuilder; import com.google.ortools.sat.Literal; import java.util.ArrayList; import java.util.List; import java.util.stream.IntStream; /** Assignment problem. */ public class AssignmentTaskSizesSat { public static void main(String[] args) { Loader.loadNativeLibraries(); // Data int[][] costs = { {90, 76, 75, 70, 50, 74, 12, 68}, {35, 85, 55, 65, 48, 101, 70, 83}, {125, 95, 90, 105, 59, 120, 36, 73}, {45, 110, 95, 115, 104, 83, 37, 71}, {60, 105, 80, 75, 59, 62, 93, 88}, {45, 65, 110, 95, 47, 31, 81, 34}, {38, 51, 107, 41, 69, 99, 115, 48}, {47, 85, 57, 71, 92, 77, 109, 36}, {39, 63, 97, 49, 118, 56, 92, 61}, {47, 101, 71, 60, 88, 109, 52, 90}, }; final int numWorkers = costs.length; final int numTasks = costs[0].length; final int[] allWorkers = IntStream.range(0, numWorkers).toArray(); final int[] allTasks = IntStream.range(0, numTasks).toArray(); final int[] taskSizes = {10, 7, 3, 12, 15, 4, 11, 5}; // Maximum total of task sizes for any worker final int totalSizeMax = 15; // Model CpModel model = new CpModel(); // Variables Literal[][] x = new Literal[numWorkers][numTasks]; for (int worker : allWorkers) { for (int task : allTasks) { x[worker][task] = model.newBoolVar("x[" + worker + "," + task + "]"); } } // Constraints // Each worker has a maximum capacity. for (int worker : allWorkers) { LinearExprBuilder expr = LinearExpr.newBuilder(); for (int task : allTasks) { expr.addTerm(x[worker][task], taskSizes[task]); } model.addLessOrEqual(expr, totalSizeMax); } // Each task is assigned to exactly one worker. for (int task : allTasks) { List<Literal> workers = new ArrayList<>(); for (int worker : allWorkers) { workers.add(x[worker][task]); } model.addExactlyOne(workers); } // Objective LinearExprBuilder obj = LinearExpr.newBuilder(); for (int worker : allWorkers) { for (int task : allTasks) { obj.addTerm(x[worker][task], costs[worker][task]); } } model.minimize(obj); // Solve CpSolver solver = new CpSolver(); CpSolverStatus status = solver.solve(model); // Print solution. // Check that the problem has a feasible solution. if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) { System.out.println("Total cost: " + solver.objectiveValue() + "\n"); for (int worker : allWorkers) { for (int task : allTasks) { if (solver.booleanValue(x[worker][task])) { System.out.println("Worker " + worker + " assigned to task " + task + ". Cost: " + costs[worker][task]); } } } } else { System.err.println("No solution found."); } } private AssignmentTaskSizesSat() {} }
C#
using System; using System.Collections.Generic; using System.Linq; using Google.OrTools.Sat; public class AssignmentTaskSizesSat { public static void Main(String[] args) { // Data. int[,] costs = { { 90, 76, 75, 70, 50, 74, 12, 68 }, { 35, 85, 55, 65, 48, 101, 70, 83 }, { 125, 95, 90, 105, 59, 120, 36, 73 }, { 45, 110, 95, 115, 104, 83, 37, 71 }, { 60, 105, 80, 75, 59, 62, 93, 88 }, { 45, 65, 110, 95, 47, 31, 81, 34 }, { 38, 51, 107, 41, 69, 99, 115, 48 }, { 47, 85, 57, 71, 92, 77, 109, 36 }, { 39, 63, 97, 49, 118, 56, 92, 61 }, { 47, 101, 71, 60, 88, 109, 52, 90 }, }; int numWorkers = costs.GetLength(0); int numTasks = costs.GetLength(1); int[] allWorkers = Enumerable.Range(0, numWorkers).ToArray(); int[] allTasks = Enumerable.Range(0, numTasks).ToArray(); int[] taskSizes = { 10, 7, 3, 12, 15, 4, 11, 5 }; // Maximum total of task sizes for any worker int totalSizeMax = 15; // Model. CpModel model = new CpModel(); // Variables. BoolVar[,] x = new BoolVar[numWorkers, numTasks]; foreach (int worker in allWorkers) { foreach (int task in allTasks) { x[worker, task] = model.NewBoolVar($"x[{worker},{task}]"); } } // Constraints // Each worker is assigned to at most max task size. foreach (int worker in allWorkers) { BoolVar[] vars = new BoolVar[numTasks]; foreach (int task in allTasks) { vars[task] = x[worker, task]; } model.Add(LinearExpr.WeightedSum(vars, taskSizes) <= totalSizeMax); } // Each task is assigned to exactly one worker. foreach (int task in allTasks) { List<ILiteral> workers = new List<ILiteral>(); foreach (int worker in allWorkers) { workers.Add(x[worker, task]); } model.AddExactlyOne(workers); } // Objective LinearExprBuilder obj = LinearExpr.NewBuilder(); foreach (int worker in allWorkers) { foreach (int task in allTasks) { obj.AddTerm(x[worker, task], costs[worker, task]); } } model.Minimize(obj); // Solve CpSolver solver = new CpSolver(); CpSolverStatus status = solver.Solve(model); Console.WriteLine($"Solve status: {status}"); // Print solution. // Check that the problem has a feasible solution. if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible) { Console.WriteLine($"Total cost: {solver.ObjectiveValue}\n"); foreach (int worker in allWorkers) { foreach (int task in allTasks) { if (solver.Value(x[worker, task]) > 0.5) { Console.WriteLine($"Worker {worker} assigned to task {task}. " + $"Cost: {costs[worker, task]}"); } } } } else { Console.WriteLine("No solution found."); } Console.WriteLine("Statistics"); Console.WriteLine($" - conflicts : {solver.NumConflicts()}"); Console.WriteLine($" - branches : {solver.NumBranches()}"); Console.WriteLine($" - wall time : {solver.WallTime()}s"); } }
MIP solution
Next, we describe a solution to the assignment problem using the MIP solver.
Import the libraries
The following code imports the required library.
Python
from ortools.linear_solver import pywraplp
C++
#include <cstdint> #include <memory> #include <numeric> #include <vector> #include "absl/strings/str_format.h" #include "ortools/base/logging.h" #include "ortools/linear_solver/linear_solver.h"
Java
import com.google.ortools.Loader; import com.google.ortools.linearsolver.MPConstraint; import com.google.ortools.linearsolver.MPObjective; import com.google.ortools.linearsolver.MPSolver; import com.google.ortools.linearsolver.MPVariable; import java.util.stream.IntStream;
C#
using System; using System.Collections.Generic; using System.Linq; using Google.OrTools.LinearSolver;
Define the data
The following code creates the data for the program.
Python
costs = [ [90, 76, 75, 70, 50, 74, 12, 68], [35, 85, 55, 65, 48, 101, 70, 83], [125, 95, 90, 105, 59, 120, 36, 73], [45, 110, 95, 115, 104, 83, 37, 71], [60, 105, 80, 75, 59, 62, 93, 88], [45, 65, 110, 95, 47, 31, 81, 34], [38, 51, 107, 41, 69, 99, 115, 48], [47, 85, 57, 71, 92, 77, 109, 36], [39, 63, 97, 49, 118, 56, 92, 61], [47, 101, 71, 60, 88, 109, 52, 90], ] num_workers = len(costs) num_tasks = len(costs[0]) task_sizes = [10, 7, 3, 12, 15, 4, 11, 5] # Maximum total of task sizes for any worker total_size_max = 15
C++
const std::vector<std::vector<int64_t>> costs = {{ {{90, 76, 75, 70, 50, 74, 12, 68}}, {{35, 85, 55, 65, 48, 101, 70, 83}}, {{125, 95, 90, 105, 59, 120, 36, 73}}, {{45, 110, 95, 115, 104, 83, 37, 71}}, {{60, 105, 80, 75, 59, 62, 93, 88}}, {{45, 65, 110, 95, 47, 31, 81, 34}}, {{38, 51, 107, 41, 69, 99, 115, 48}}, {{47, 85, 57, 71, 92, 77, 109, 36}}, {{39, 63, 97, 49, 118, 56, 92, 61}}, {{47, 101, 71, 60, 88, 109, 52, 90}}, }}; const int num_workers = costs.size(); std::vector<int> all_workers(num_workers); std::iota(all_workers.begin(), all_workers.end(), 0); const int num_tasks = costs[0].size(); std::vector<int> all_tasks(num_tasks); std::iota(all_tasks.begin(), all_tasks.end(), 0); const std::vector<int64_t> task_sizes = {{10, 7, 3, 12, 15, 4, 11, 5}}; // Maximum total of task sizes for any worker const int total_size_max = 15;
Java
double[][] costs = { {90, 76, 75, 70, 50, 74, 12, 68}, {35, 85, 55, 65, 48, 101, 70, 83}, {125, 95, 90, 105, 59, 120, 36, 73}, {45, 110, 95, 115, 104, 83, 37, 71}, {60, 105, 80, 75, 59, 62, 93, 88}, {45, 65, 110, 95, 47, 31, 81, 34}, {38, 51, 107, 41, 69, 99, 115, 48}, {47, 85, 57, 71, 92, 77, 109, 36}, {39, 63, 97, 49, 118, 56, 92, 61}, {47, 101, 71, 60, 88, 109, 52, 90}, }; int numWorkers = costs.length; int numTasks = costs[0].length; final int[] allWorkers = IntStream.range(0, numWorkers).toArray(); final int[] allTasks = IntStream.range(0, numTasks).toArray(); final int[] taskSizes = {10, 7, 3, 12, 15, 4, 11, 5}; // Maximum total of task sizes for any worker final int totalSizeMax = 15;
C#
int[,] costs = { { 90, 76, 75, 70, 50, 74, 12, 68 }, { 35, 85, 55, 65, 48, 101, 70, 83 }, { 125, 95, 90, 105, 59, 120, 36, 73 }, { 45, 110, 95, 115, 104, 83, 37, 71 }, { 60, 105, 80, 75, 59, 62, 93, 88 }, { 45, 65, 110, 95, 47, 31, 81, 34 }, { 38, 51, 107, 41, 69, 99, 115, 48 }, { 47, 85, 57, 71, 92, 77, 109, 36 }, { 39, 63, 97, 49, 118, 56, 92, 61 }, { 47, 101, 71, 60, 88, 109, 52, 90 }, }; int numWorkers = costs.GetLength(0); int numTasks = costs.GetLength(1); int[] allWorkers = Enumerable.Range(0, numWorkers).ToArray(); int[] allTasks = Enumerable.Range(0, numTasks).ToArray(); int[] taskSizes = { 10, 7, 3, 12, 15, 4, 11, 5 }; // Maximum total of task sizes for any worker int totalSizeMax = 15;
Declare the solver
The following code creates the solver.
Python
# Create the mip solver with the SCIP backend. solver = pywraplp.Solver.CreateSolver("SCIP") if not solver: return
C++
// Create the mip solver with the SCIP backend. std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP")); if (!solver) { LOG(WARNING) << "SCIP solver unavailable."; return; }
Java
// Create the linear solver with the SCIP backend. MPSolver solver = MPSolver.createSolver("SCIP"); if (solver == null) { System.out.println("Could not create solver SCIP"); return; }
C#
Solver solver = Solver.CreateSolver("SCIP"); if (solver is null) { return; }
Create the variables
The following code creates an array of variables for the problem.
Python
# x[i, j] is an array of 0-1 variables, which will be 1 # if worker i is assigned to task j. x = {} for worker in range(num_workers): for task in range(num_tasks): x[worker, task] = solver.BoolVar(f"x[{worker},{task}]")
C++
// x[i][j] is an array of 0-1 variables, which will be 1 // if worker i is assigned to task j. std::vector<std::vector<const MPVariable*>> x( num_workers, std::vector<const MPVariable*>(num_tasks)); for (int worker : all_workers) { for (int task : all_tasks) { x[worker][task] = solver->MakeBoolVar(absl::StrFormat("x[%d,%d]", worker, task)); } }
Java
// x[i][j] is an array of 0-1 variables, which will be 1 // if worker i is assigned to task j. MPVariable[][] x = new MPVariable[numWorkers][numTasks]; for (int worker : allWorkers) { for (int task : allTasks) { x[worker][task] = solver.makeBoolVar("x[" + worker + "," + task + "]"); } }
C#
// x[i, j] is an array of 0-1 variables, which will be 1 // if worker i is assigned to task j. Variable[,] x = new Variable[numWorkers, numTasks]; foreach (int worker in allWorkers) { foreach (int task in allTasks) { x[worker, task] = solver.MakeBoolVar($"x[{worker},{task}]"); } }
Add the constraints
The following code creates the constraints for the program.
Python
# The total size of the tasks each worker takes on is at most total_size_max. for worker in range(num_workers): solver.Add( solver.Sum( [task_sizes[task] * x[worker, task] for task in range(num_tasks)] ) <= total_size_max ) # Each task is assigned to exactly one worker. for task in range(num_tasks): solver.Add(solver.Sum([x[worker, task] for worker in range(num_workers)]) == 1)
C++
// Each worker is assigned to at most one task. for (int worker : all_workers) { LinearExpr worker_sum; for (int task : all_tasks) { worker_sum += LinearExpr(x[worker][task]) * task_sizes[task]; } solver->MakeRowConstraint(worker_sum <= total_size_max); } // Each task is assigned to exactly one worker. for (int task : all_tasks) { LinearExpr task_sum; for (int worker : all_workers) { task_sum += x[worker][task]; } solver->MakeRowConstraint(task_sum == 1.0); }
Java
// Each worker is assigned to at most max task size. for (int worker : allWorkers) { MPConstraint constraint = solver.makeConstraint(0, totalSizeMax, ""); for (int task : allTasks) { constraint.setCoefficient(x[worker][task], taskSizes[task]); } } // Each task is assigned to exactly one worker. for (int task : allTasks) { MPConstraint constraint = solver.makeConstraint(1, 1, ""); for (int worker : allWorkers) { constraint.setCoefficient(x[worker][task], 1); } }
C#
// Each worker is assigned to at most max task size. foreach (int worker in allWorkers) { Constraint constraint = solver.MakeConstraint(0, totalSizeMax, ""); foreach (int task in allTasks) { constraint.SetCoefficient(x[worker, task], taskSizes[task]); } } // Each task is assigned to exactly one worker. foreach (int task in allTasks) { Constraint constraint = solver.MakeConstraint(1, 1, ""); foreach (int worker in allWorkers) { constraint.SetCoefficient(x[worker, task], 1); } }
Create the objective
The following code creates the objective function.
Python
objective_terms = [] for worker in range(num_workers): for task in range(num_tasks): objective_terms.append(costs[worker][task] * x[worker, task]) solver.Minimize(solver.Sum(objective_terms))
C++
MPObjective* const objective = solver->MutableObjective(); for (int worker : all_workers) { for (int task : all_tasks) { objective->SetCoefficient(x[worker][task], costs[worker][task]); } } objective->SetMinimization();
Java
MPObjective objective = solver.objective(); for (int worker : allWorkers) { for (int task : allTasks) { objective.setCoefficient(x[worker][task], costs[worker][task]); } } objective.setMinimization();
C#
Objective objective = solver.Objective(); foreach (int worker in allWorkers) { foreach (int task in allTasks) { objective.SetCoefficient(x[worker, task], costs[worker, task]); } } objective.SetMinimization();
Invoke the solver
The following code invokes the solver and displays the results.
Python
print(f"Solving with {solver.SolverVersion()}") status = solver.Solve()
C++
const MPSolver::ResultStatus result_status = solver->Solve();
Java
MPSolver.ResultStatus resultStatus = solver.solve();
C#
Solver.ResultStatus resultStatus = solver.Solve();
Display the results
Now, we can print the solution.
Python
if status == pywraplp.Solver.OPTIMAL or status == pywraplp.Solver.FEASIBLE: print(f"Total cost = {solver.Objective().Value()}\n") for worker in range(num_workers): for task in range(num_tasks): if x[worker, task].solution_value() > 0.5: print( f"Worker {worker} assigned to task {task}." + f" Cost: {costs[worker][task]}" ) else: print("No solution found.")
C++
// Check that the problem has a feasible solution. if (result_status != MPSolver::OPTIMAL && result_status != MPSolver::FEASIBLE) { LOG(FATAL) << "No solution found."; } LOG(INFO) << "Total cost = " << objective->Value() << "\n\n"; for (int worker : all_workers) { for (int task : all_tasks) { // Test if x[i][j] is 0 or 1 (with tolerance for floating point // arithmetic). if (x[worker][task]->solution_value() > 0.5) { LOG(INFO) << "Worker " << worker << " assigned to task " << task << ". Cost: " << costs[worker][task]; } } }
Java
// Check that the problem has a feasible solution. if (resultStatus == MPSolver.ResultStatus.OPTIMAL || resultStatus == MPSolver.ResultStatus.FEASIBLE) { System.out.println("Total cost: " + objective.value() + "\n"); for (int worker : allWorkers) { for (int task : allTasks) { // Test if x[i][j] is 0 or 1 (with tolerance for floating point // arithmetic). if (x[worker][task].solutionValue() > 0.5) { System.out.println("Worker " + worker + " assigned to task " + task + ". Cost: " + costs[worker][task]); } } } } else { System.err.println("No solution found."); }
C#
// Check that the problem has a feasible solution. if (resultStatus == Solver.ResultStatus.OPTIMAL || resultStatus == Solver.ResultStatus.FEASIBLE) { Console.WriteLine($"Total cost: {solver.Objective().Value()}\n"); foreach (int worker in allWorkers) { foreach (int task in allTasks) { // Test if x[i, j] is 0 or 1 (with tolerance for floating point // arithmetic). if (x[worker, task].SolutionValue() > 0.5) { Console.WriteLine($"Worker {worker} assigned to task {task}. Cost: {costs[worker, task]}"); } } } } else { Console.WriteLine("No solution found."); }
Here is the output of the program.
Minimum cost = 326.0 Worker 0 assigned to task 6 Cost = 12 Worker 1 assigned to task 0 Cost = 35 Worker 1 assigned to task 2 Cost = 55 Worker 4 assigned to task 4 Cost = 59 Worker 5 assigned to task 5 Cost = 31 Worker 5 assigned to task 7 Cost = 34 Worker 6 assigned to task 1 Cost = 51 Worker 8 assigned to task 3 Cost = 49 Time = 0.0167 seconds
The entire program
Here is the entire program.
Python
"""MIP example that solves an assignment problem.""" from ortools.linear_solver import pywraplp def main(): # Data costs = [ [90, 76, 75, 70, 50, 74, 12, 68], [35, 85, 55, 65, 48, 101, 70, 83], [125, 95, 90, 105, 59, 120, 36, 73], [45, 110, 95, 115, 104, 83, 37, 71], [60, 105, 80, 75, 59, 62, 93, 88], [45, 65, 110, 95, 47, 31, 81, 34], [38, 51, 107, 41, 69, 99, 115, 48], [47, 85, 57, 71, 92, 77, 109, 36], [39, 63, 97, 49, 118, 56, 92, 61], [47, 101, 71, 60, 88, 109, 52, 90], ] num_workers = len(costs) num_tasks = len(costs[0]) task_sizes = [10, 7, 3, 12, 15, 4, 11, 5] # Maximum total of task sizes for any worker total_size_max = 15 # Solver # Create the mip solver with the SCIP backend. solver = pywraplp.Solver.CreateSolver("SCIP") if not solver: return # Variables # x[i, j] is an array of 0-1 variables, which will be 1 # if worker i is assigned to task j. x = {} for worker in range(num_workers): for task in range(num_tasks): x[worker, task] = solver.BoolVar(f"x[{worker},{task}]") # Constraints # The total size of the tasks each worker takes on is at most total_size_max. for worker in range(num_workers): solver.Add( solver.Sum( [task_sizes[task] * x[worker, task] for task in range(num_tasks)] ) <= total_size_max ) # Each task is assigned to exactly one worker. for task in range(num_tasks): solver.Add(solver.Sum([x[worker, task] for worker in range(num_workers)]) == 1) # Objective objective_terms = [] for worker in range(num_workers): for task in range(num_tasks): objective_terms.append(costs[worker][task] * x[worker, task]) solver.Minimize(solver.Sum(objective_terms)) # Solve print(f"Solving with {solver.SolverVersion()}") status = solver.Solve() # Print solution. if status == pywraplp.Solver.OPTIMAL or status == pywraplp.Solver.FEASIBLE: print(f"Total cost = {solver.Objective().Value()}\n") for worker in range(num_workers): for task in range(num_tasks): if x[worker, task].solution_value() > 0.5: print( f"Worker {worker} assigned to task {task}." + f" Cost: {costs[worker][task]}" ) else: print("No solution found.") if __name__ == "__main__": main()
C++
// Solve a simple assignment problem. #include <cstdint> #include <memory> #include <numeric> #include <vector> #include "absl/strings/str_format.h" #include "ortools/base/logging.h" #include "ortools/linear_solver/linear_solver.h" namespace operations_research { void AssignmentTeamsMip() { // Data const std::vector<std::vector<int64_t>> costs = {{ {{90, 76, 75, 70, 50, 74, 12, 68}}, {{35, 85, 55, 65, 48, 101, 70, 83}}, {{125, 95, 90, 105, 59, 120, 36, 73}}, {{45, 110, 95, 115, 104, 83, 37, 71}}, {{60, 105, 80, 75, 59, 62, 93, 88}}, {{45, 65, 110, 95, 47, 31, 81, 34}}, {{38, 51, 107, 41, 69, 99, 115, 48}}, {{47, 85, 57, 71, 92, 77, 109, 36}}, {{39, 63, 97, 49, 118, 56, 92, 61}}, {{47, 101, 71, 60, 88, 109, 52, 90}}, }}; const int num_workers = costs.size(); std::vector<int> all_workers(num_workers); std::iota(all_workers.begin(), all_workers.end(), 0); const int num_tasks = costs[0].size(); std::vector<int> all_tasks(num_tasks); std::iota(all_tasks.begin(), all_tasks.end(), 0); const std::vector<int64_t> task_sizes = {{10, 7, 3, 12, 15, 4, 11, 5}}; // Maximum total of task sizes for any worker const int total_size_max = 15; // Solver // Create the mip solver with the SCIP backend. std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP")); if (!solver) { LOG(WARNING) << "SCIP solver unavailable."; return; } // Variables // x[i][j] is an array of 0-1 variables, which will be 1 // if worker i is assigned to task j. std::vector<std::vector<const MPVariable*>> x( num_workers, std::vector<const MPVariable*>(num_tasks)); for (int worker : all_workers) { for (int task : all_tasks) { x[worker][task] = solver->MakeBoolVar(absl::StrFormat("x[%d,%d]", worker, task)); } } // Constraints // Each worker is assigned to at most one task. for (int worker : all_workers) { LinearExpr worker_sum; for (int task : all_tasks) { worker_sum += LinearExpr(x[worker][task]) * task_sizes[task]; } solver->MakeRowConstraint(worker_sum <= total_size_max); } // Each task is assigned to exactly one worker. for (int task : all_tasks) { LinearExpr task_sum; for (int worker : all_workers) { task_sum += x[worker][task]; } solver->MakeRowConstraint(task_sum == 1.0); } // Objective. MPObjective* const objective = solver->MutableObjective(); for (int worker : all_workers) { for (int task : all_tasks) { objective->SetCoefficient(x[worker][task], costs[worker][task]); } } objective->SetMinimization(); // Solve const MPSolver::ResultStatus result_status = solver->Solve(); // Print solution. // Check that the problem has a feasible solution. if (result_status != MPSolver::OPTIMAL && result_status != MPSolver::FEASIBLE) { LOG(FATAL) << "No solution found."; } LOG(INFO) << "Total cost = " << objective->Value() << "\n\n"; for (int worker : all_workers) { for (int task : all_tasks) { // Test if x[i][j] is 0 or 1 (with tolerance for floating point // arithmetic). if (x[worker][task]->solution_value() > 0.5) { LOG(INFO) << "Worker " << worker << " assigned to task " << task << ". Cost: " << costs[worker][task]; } } } } } // namespace operations_research int main(int argc, char** argv) { operations_research::AssignmentTeamsMip(); return EXIT_SUCCESS; }
Java
package com.google.ortools.linearsolver.samples; import com.google.ortools.Loader; import com.google.ortools.linearsolver.MPConstraint; import com.google.ortools.linearsolver.MPObjective; import com.google.ortools.linearsolver.MPSolver; import com.google.ortools.linearsolver.MPVariable; import java.util.stream.IntStream; /** MIP example that solves an assignment problem. */ public class AssignmentTaskSizesMip { public static void main(String[] args) { Loader.loadNativeLibraries(); // Data double[][] costs = { {90, 76, 75, 70, 50, 74, 12, 68}, {35, 85, 55, 65, 48, 101, 70, 83}, {125, 95, 90, 105, 59, 120, 36, 73}, {45, 110, 95, 115, 104, 83, 37, 71}, {60, 105, 80, 75, 59, 62, 93, 88}, {45, 65, 110, 95, 47, 31, 81, 34}, {38, 51, 107, 41, 69, 99, 115, 48}, {47, 85, 57, 71, 92, 77, 109, 36}, {39, 63, 97, 49, 118, 56, 92, 61}, {47, 101, 71, 60, 88, 109, 52, 90}, }; int numWorkers = costs.length; int numTasks = costs[0].length; final int[] allWorkers = IntStream.range(0, numWorkers).toArray(); final int[] allTasks = IntStream.range(0, numTasks).toArray(); final int[] taskSizes = {10, 7, 3, 12, 15, 4, 11, 5}; // Maximum total of task sizes for any worker final int totalSizeMax = 15; // Solver // Create the linear solver with the SCIP backend. MPSolver solver = MPSolver.createSolver("SCIP"); if (solver == null) { System.out.println("Could not create solver SCIP"); return; } // Variables // x[i][j] is an array of 0-1 variables, which will be 1 // if worker i is assigned to task j. MPVariable[][] x = new MPVariable[numWorkers][numTasks]; for (int worker : allWorkers) { for (int task : allTasks) { x[worker][task] = solver.makeBoolVar("x[" + worker + "," + task + "]"); } } // Constraints // Each worker is assigned to at most max task size. for (int worker : allWorkers) { MPConstraint constraint = solver.makeConstraint(0, totalSizeMax, ""); for (int task : allTasks) { constraint.setCoefficient(x[worker][task], taskSizes[task]); } } // Each task is assigned to exactly one worker. for (int task : allTasks) { MPConstraint constraint = solver.makeConstraint(1, 1, ""); for (int worker : allWorkers) { constraint.setCoefficient(x[worker][task], 1); } } // Objective MPObjective objective = solver.objective(); for (int worker : allWorkers) { for (int task : allTasks) { objective.setCoefficient(x[worker][task], costs[worker][task]); } } objective.setMinimization(); // Solve MPSolver.ResultStatus resultStatus = solver.solve(); // Print solution. // Check that the problem has a feasible solution. if (resultStatus == MPSolver.ResultStatus.OPTIMAL || resultStatus == MPSolver.ResultStatus.FEASIBLE) { System.out.println("Total cost: " + objective.value() + "\n"); for (int worker : allWorkers) { for (int task : allTasks) { // Test if x[i][j] is 0 or 1 (with tolerance for floating point // arithmetic). if (x[worker][task].solutionValue() > 0.5) { System.out.println("Worker " + worker + " assigned to task " + task + ". Cost: " + costs[worker][task]); } } } } else { System.err.println("No solution found."); } } private AssignmentTaskSizesMip() {} }
C#
using System; using System.Collections.Generic; using System.Linq; using Google.OrTools.LinearSolver; public class AssignmentTaskSizesMip { static void Main() { // Data. int[,] costs = { { 90, 76, 75, 70, 50, 74, 12, 68 }, { 35, 85, 55, 65, 48, 101, 70, 83 }, { 125, 95, 90, 105, 59, 120, 36, 73 }, { 45, 110, 95, 115, 104, 83, 37, 71 }, { 60, 105, 80, 75, 59, 62, 93, 88 }, { 45, 65, 110, 95, 47, 31, 81, 34 }, { 38, 51, 107, 41, 69, 99, 115, 48 }, { 47, 85, 57, 71, 92, 77, 109, 36 }, { 39, 63, 97, 49, 118, 56, 92, 61 }, { 47, 101, 71, 60, 88, 109, 52, 90 }, }; int numWorkers = costs.GetLength(0); int numTasks = costs.GetLength(1); int[] allWorkers = Enumerable.Range(0, numWorkers).ToArray(); int[] allTasks = Enumerable.Range(0, numTasks).ToArray(); int[] taskSizes = { 10, 7, 3, 12, 15, 4, 11, 5 }; // Maximum total of task sizes for any worker int totalSizeMax = 15; // Solver. Solver solver = Solver.CreateSolver("SCIP"); if (solver is null) { return; } // Variables. // x[i, j] is an array of 0-1 variables, which will be 1 // if worker i is assigned to task j. Variable[,] x = new Variable[numWorkers, numTasks]; foreach (int worker in allWorkers) { foreach (int task in allTasks) { x[worker, task] = solver.MakeBoolVar($"x[{worker},{task}]"); } } // Constraints // Each worker is assigned to at most max task size. foreach (int worker in allWorkers) { Constraint constraint = solver.MakeConstraint(0, totalSizeMax, ""); foreach (int task in allTasks) { constraint.SetCoefficient(x[worker, task], taskSizes[task]); } } // Each task is assigned to exactly one worker. foreach (int task in allTasks) { Constraint constraint = solver.MakeConstraint(1, 1, ""); foreach (int worker in allWorkers) { constraint.SetCoefficient(x[worker, task], 1); } } // Objective Objective objective = solver.Objective(); foreach (int worker in allWorkers) { foreach (int task in allTasks) { objective.SetCoefficient(x[worker, task], costs[worker, task]); } } objective.SetMinimization(); // Solve Solver.ResultStatus resultStatus = solver.Solve(); // Print solution. // Check that the problem has a feasible solution. if (resultStatus == Solver.ResultStatus.OPTIMAL || resultStatus == Solver.ResultStatus.FEASIBLE) { Console.WriteLine($"Total cost: {solver.Objective().Value()}\n"); foreach (int worker in allWorkers) { foreach (int task in allTasks) { // Test if x[i, j] is 0 or 1 (with tolerance for floating point // arithmetic). if (x[worker, task].SolutionValue() > 0.5) { Console.WriteLine($"Worker {worker} assigned to task {task}. Cost: {costs[worker, task]}"); } } } } else { Console.WriteLine("No solution found."); } } }