[[["わかりやすい","easyToUnderstand","thumb-up"],["問題の解決に役立った","solvedMyProblem","thumb-up"],["その他","otherUp","thumb-up"]],[["必要な情報がない","missingTheInformationINeed","thumb-down"],["複雑すぎる / 手順が多すぎる","tooComplicatedTooManySteps","thumb-down"],["最新ではない","outOfDate","thumb-down"],["翻訳に関する問題","translationIssue","thumb-down"],["サンプル / コードに問題がある","samplesCodeIssue","thumb-down"],["その他","otherDown","thumb-down"]],[],[[["\u003cp\u003eThe MACAv2-METDATA datasets provide data from 20 global climate models, downscaled using the Multivariate Adaptive Constructed Analogs (MACA) method, and cover the conterminous United States.\u003c/p\u003e\n"],["\u003cp\u003eMACA is a statistical downscaling approach that leverages a meteorological observation training dataset to correct biases and align spatial patterns from global climate models with observed data.\u003c/p\u003e\n"],["\u003cp\u003eThese datasets offer both daily and monthly summaries of climate variables, making them versatile for various climate change research and applications.\u003c/p\u003e\n"]]],["The MACAv2-METDATA dataset, created by the University of Idaho, comprises 20 global climate models focused on the conterminous USA. It employs the Multivariate Adaptive Constructed Analogs (MACA) method for statistical downscaling. This process utilizes a meteorological observation dataset to correct historical biases and align spatial patterns. The dataset, available monthly, is tagged with terms like climate, geophysical, and MACA, providing comprehensive climate data.\n"],null,[]]