在 iOS 上使用 ML Kit 辨識圖片中的文字

您可以使用機器學習套件辨識圖片或影片中的文字,例如路標的文字。這項功能的主要特徵如下:

文字辨識 API
說明辨識圖片或影片中的拉丁字母文字。
SDK 名稱GoogleMLKit/TextRecognition (version 2.2.0)
實作在建構期間,資產會以靜態方式連結至您的應用程式。
應用程式大小影響大約 20 MB
效能在多數裝置上即時執行。

立即體驗

事前準備

  1. 在 Podfile 中加入下列機器學習套件 Pod:
    pod 'GoogleMLKit/TextRecognition','2.2.0'
    
  2. 安裝或更新專案的 Pod 後,使用 .xcworkspace 開啟 Xcode 專案。Xcode 12.4 以上版本支援機器學習套件。

1. 建立 TextRecognizer 的執行個體

呼叫 +textRecognizer 來建立 TextRecognizer 的執行個體:

Swift

let textRecognizer = TextRecognizer.textRecognizer()
      

Objective-C

MLKTextRecognizer *textRecognizer = [MLKTextRecognizer textRecognizer];
      

2. 準備輸入圖片

將圖片做為 UIImageCMSampleBufferRef 傳遞至 TextRecognizerprocess(_:completion:) 方法:

使用 UIImageCMSampleBuffer 建立 VisionImage 物件。

如果您使用 UIImage,請按照下列步驟操作:

  • 使用 UIImage 建立 VisionImage 物件。請務必指定正確的 .orientation

    Swift

    let image = VisionImage(image: UIImage)
    visionImage.orientation = image.imageOrientation

    Objective-C

    MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image];
    visionImage.orientation = image.imageOrientation;

如果您使用 CMSampleBuffer,請按照下列步驟操作:

  • 指定 CMSampleBuffer 中包含的圖片資料方向。

    如何取得圖片方向:

    Swift

    func imageOrientation(
      deviceOrientation: UIDeviceOrientation,
      cameraPosition: AVCaptureDevice.Position
    ) -> UIImage.Orientation {
      switch deviceOrientation {
      case .portrait:
        return cameraPosition == .front ? .leftMirrored : .right
      case .landscapeLeft:
        return cameraPosition == .front ? .downMirrored : .up
      case .portraitUpsideDown:
        return cameraPosition == .front ? .rightMirrored : .left
      case .landscapeRight:
        return cameraPosition == .front ? .upMirrored : .down
      case .faceDown, .faceUp, .unknown:
        return .up
      }
    }
          

    Objective-C

    - (UIImageOrientation)
      imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                             cameraPosition:(AVCaptureDevicePosition)cameraPosition {
      switch (deviceOrientation) {
        case UIDeviceOrientationPortrait:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored
                                                                : UIImageOrientationRight;
    
        case UIDeviceOrientationLandscapeLeft:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored
                                                                : UIImageOrientationUp;
        case UIDeviceOrientationPortraitUpsideDown:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored
                                                                : UIImageOrientationLeft;
        case UIDeviceOrientationLandscapeRight:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored
                                                                : UIImageOrientationDown;
        case UIDeviceOrientationUnknown:
        case UIDeviceOrientationFaceUp:
        case UIDeviceOrientationFaceDown:
          return UIImageOrientationUp;
      }
    }
          
  • 使用 CMSampleBuffer 物件和方向建立 VisionImage 物件:

    Swift

    let image = VisionImage(buffer: sampleBuffer)
    image.orientation = imageOrientation(
      deviceOrientation: UIDevice.current.orientation,
      cameraPosition: cameraPosition)

    Objective-C

     MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer];
     image.orientation =
       [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                    cameraPosition:cameraPosition];

3. 處理圖片

接著,將圖片傳送至 process(_:completion:) 方法:

Swift

textRecognizer.process(visionImage) { result, error in
  guard error == nil, let result = result else {
    // Error handling
    return
  }
  // Recognized text
}

Objective-C

[textRecognizer processImage:image
                  completion:^(MLKText *_Nullable result,
                               NSError *_Nullable error) {
  if (error != nil || result == nil) {
    // Error handling
    return;
  }
  // Recognized text
}];

4. 從已辨識的文字區塊擷取文字

如果文字辨識作業成功,系統會傳回 Text 物件。Text 物件包含圖像中辨識的完整文字,以及零或多個 TextBlock 物件。

每個 TextBlock 都是矩形文字區塊,其中包含零個或多個 TextLine 物件。每個 TextLine 物件都包含零個或多個 TextElement 物件,這些物件代表字詞和類似實體的實體,例如日期和數字。

針對各個 TextBlockTextLineTextElement 物件,您可以取得系統辨識的區域和邊界座標。

例如:

Swift

let resultText = result.text
for block in result.blocks {
    let blockText = block.text
    let blockLanguages = block.recognizedLanguages
    let blockCornerPoints = block.cornerPoints
    let blockFrame = block.frame
    for line in block.lines {
        let lineText = line.text
        let lineLanguages = line.recognizedLanguages
        let lineCornerPoints = line.cornerPoints
        let lineFrame = line.frame
        for element in line.elements {
            let elementText = element.text
            let elementCornerPoints = element.cornerPoints
            let elementFrame = element.frame
        }
    }
}

Objective-C

NSString *resultText = result.text;
for (MLKTextBlock *block in result.blocks) {
  NSString *blockText = block.text;
  NSArray<MLKTextRecognizedLanguage *> *blockLanguages = block.recognizedLanguages;
  NSArray<NSValue *> *blockCornerPoints = block.cornerPoints;
  CGRect blockFrame = block.frame;
  for (MLKTextLine *line in block.lines) {
    NSString *lineText = line.text;
    NSArray<MLKTextRecognizedLanguage *> *lineLanguages = line.recognizedLanguages;
    NSArray<NSValue *> *lineCornerPoints = line.cornerPoints;
    CGRect lineFrame = line.frame;
    for (MLKTextElement *element in line.elements) {
      NSString *elementText = element.text;
      NSArray<NSValue *> *elementCornerPoints = element.cornerPoints;
      CGRect elementFrame = element.frame;
    }
  }
}

輸入圖片規範

  • 為了讓機器學習套件能正確識別文字,輸入圖片必須包含以足夠像素資料呈現的文字。在理想情況下,每個字元至少應為 16x16 像素。一般來說,如果字元大於 24x24 像素,通常就沒有準確率。

    例如,640x480 圖片可能有助於掃描佔滿圖片寬度的名片。如要掃描以字母大小列印的文件,您可能需要提供 720x1280 像素的圖片。

  • 圖片焦點不佳可能會影響文字辨識的準確度。如果無法收到可接受的結果,請嘗試請使用者重新擷取圖片。

  • 如果您要在即時應用程式中辨識文字,應考慮輸入圖片的整體尺寸。較小型的影像處理速度較快。為了縮短延遲時間,請確保文字會盡可能佔用最多圖片,並以較低解析度擷取圖片 (請注意上述的準確率規定)。如需詳細資訊,請參閱效能改善提示

改善成效的訣竅

  • 如要處理影格,請使用偵測工具的 results(in:) 同步 API。從 AVCaptureVideoDataOutputSampleBufferDelegatecaptureOutput(_, didOutput:from:) 函式呼叫此方法,即可同步取得特定影片影格的結果。將 AVCaptureVideoDataOutputalwaysDiscardsLateVideoFrames 保留為 true,以限制對偵測工具的呼叫。假如在偵測器執行期間有新的視訊畫面可用,系統就會捨棄該影格。
  • 如果您使用偵測工具的輸出內容,為輸入圖片上的圖像重疊,請先透過 ML Kit 取得結果,然後透過單一步驟算繪圖像和疊加層。如此一來,每個處理的輸入影格只會轉譯一次到顯示途徑一次。如需範例,請參閱 ML Kit 快速入門導覽課程範例中的 updatePreviewOverlayViewWithLastFrame
  • 請考慮以較低的解析度拍照。同時也請注意,此 API 的圖片尺寸規定。